有关多项式的算法——四则运算、求逆

算法介绍 多项式的运算可以说比之前的多精度数运算还要简单一点,因为多项式的加减只能存在于同次数的项之间,所以不需要考虑加减法里面的进位退位问题,这也就使得乘除法简单了很多。 加减法的原理就没什么好说的了,乘除法都是基于多精度数的算法修改的,存储多项式也使用了ArrayList,索引值对应项的次数,其元素大小对应项的系数。 求逆则使用了欧几里得算法: 以及有限域 $F_{2^8}$ 上基于指数对数表的乘法和求逆,对应的不可约多项式 $f(x)=x^8+x^6+x^5+x+1$ 。 指数对数表的构建方法如下: 将元素$02$表示成为$\alpha$,依次计算 $\alpha^i\space modf(\alpha)\space,i=0,1,\cdots, 254$ ,将所得结果转变为十进制数,设为$\beta_i ,i=0,1,\cdots, 254$; 建表。第一行为 $\alpha_i ,i=0,1,\cdots, 254$,第二行元素依次为 $\beta_i ,i=0,1,\cdots, 254$。由于 $\alpha^0\equiv\alpha^{255}\space modf(\alpha)$,约定第$2$行,第$255$列元素为$0$; 0 1 2 3 … 253 254 255 1 2 4 8 … 233 177 0 按所建表的第二行元素的大小进行重排列; 255 0 1 197 … 72 230 104 0 1 2 3 … 253 254 255 将(3)中表的第一行放在(2)中表的第三行。 序号 0 1 2 3 … 253 254 255 $(02)^i$ 1 2 4 8 … 233 177 0 $log_{(02)^i}$ 255 0 1 197 … 72 230 104 建立上述指数对数表之后,通过查表很容易求出两个元素的乘积。又由于对于 $i=0,1,\cdots, 254$ 均有 $(\alpha^i)^{-1}\equiv\alpha^{255-i}mod(f(\alpha))$ ,所以可通过查表也很容易求出元素的逆元。...

Dec. 18, 2019 · 10 min · 2016 words

多精度数的四则运算-Java和Python实现

多精度数指的是位数超过1024Bit的数。由于这一类数的位数超过了计算机CPU寄存器表达,也就是超出了计算机的字长,所以不能够使用计算机进行直接的运算。除此之外,多精度数的大小也超出了计算机中定义的整型变量的最大大小,所以也不能使用标准的整型来存储这一类数,而需要使用数组或是字符串来存储。 对于多精度数的计算,目前有两种处理办法: 模拟人们手工进行“竖式计算”的过程编写其加减乘除函数。 这个方法的优点是操作逻辑符合人们的日常思维,易于理解,缺点是效率较低。 将多精度数当作一个二进制流进行处理,使用各种移位和逻辑操作来进行加减乘除运算。 这个方法的优点是执行效率高,缺点是代码极其复杂,可读性低,难以理解。 下面的算法都是基于第一种办法进行处理。 算法原理 先重新理一下竖式计算的流程: 加法在手工竖式计算中,当两个位相加得到的值大于10时就会产生一个进位值,并会在高一位的计算中把进位值也加入计算,这样从低位到高位一直计算直到计算结束为止。所以在算法中也需要定义一个进位值的变量。 减法与加法类似,当被减数位小于减数位时,会产生一个退位值,即向更高一位去借10,来避免产生负数。若这一位产生了借位,那么高一位的计算中就要减去1再进行计算。所以在算法中也需要定义一个退位值的变量。 乘法的运算在竖式计算中是把乘数逐位的与被乘数相乘,且运算结果随着乘数的位数向左移,最后再全部相加。所以在对单个结果位的处理中要考虑到三个因素:第一个是当前的计算结果;第二个是前一位产生的进位;第三个是之前的计算中在这一位得出的结果。 除法在竖式运算中可以理解为是多次的减法。下图展示了除法算法的流程: 模指数运算 除此之外,还有多精度数的模指数运算,即计算以下式子的值: $$\Large{a^e\space mod\space m} $$ 可采用重复平方乘算法来实现: 算法实现 理解了竖式计算的流程与规则后,就可以使用算法进行实现了。由于课程实验原因,我做了Java和Python两个语言的版本,其中Java里面使用了ArrayList对数进行存储,Python中则使用了列表List进行存储。 Java: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 // 导入对应模块 import java....

Nov. 10, 2019 · 8 min · 1531 words